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Abstract
A category which generalizes to higher dimensions many of the features of the
Temperley–Lieb category is introduced.

PACS number:
Mathematics Subject Classification: 81R50, 82B20

1. Introduction

The Temperley–Lieb category provides a useful tool in computational 2D lattice statistical
mechanics [5]. Its representation theory is the interlocutor between several different
‘equivalent’ lattice models (Potts, IRF, 6-vertex, etc) [5, 21], is universal among an important
class of solutions to integrability conditions and provides the invariant theory for Uqsl2 [13, 15].
Its categorical structure means that its representation theory can be analysed in great generality
[1, 21] (it is universal among monoidal dual categories with certain natural properties, and
was the starting point for Khovanov homology [17]). It is also important in a number of other
areas of mathematics and physics [16, 19].

In this communication we define a large family of algebras (in fact, categories) that
includes the Temperley–Lieb algebra as a particular case. Our construction is based on a notion
of diagrams as topological objects embedded in a Euclidean space of arbitrary dimension. The
case of dimension 2 then corresponds to Temperley–Lieb diagrams. Before presenting our
construction, we will briefly review its physical motivation and the type of physical situations
in which we anticipate it will be of relevance.

From a physical point of view, it is natural to expect a three-dimensional analogue of the
Temperley–Lieb algebra to play a significant part in the formulation of lattice gauge theories.
The role of the lines in Temperley–Lieb diagrams would then be played by propagating Wilson
loops, whose evolution in the lattice would define a system of surfaces in three dimensions.

More precisely, the physical setting for the Temperley–Lieb algebra from which we want
to generalize is as follows [4, 8, 21]. For G a graph with vertex set VG and edge set EG we
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Figure 1. (i) A subgraph of a square lattice and an extra layer. (ii) The corresponding new
subgraph. (iii) A sequence showing: the connectivity of the original subgraph (running # = 12);
the connectivity after adding the new horizontal edges (running # = 12 + 3); the connectivity after
adding the new vertical edges (running # = 12 + 3 − 2).

associate a Q-state Potts variable σi ∈ Q := {1, 2, . . . , Q} with each i ∈ VG. One starts with
the Potts Hamiltonian for G,

HG =
∑

〈ij〉∈EG

δσi ,σj
+ h

∑
i∈VG

δσi ,1.

We take the magnetic field parameter h = 0 and form the partition function

ZG(β) =
∑
{σi }

exp(βHG) =
∑
{σi }

∏
〈ij〉∈EG

exp
(
βδσi ,σj

) =
∑
{σi }

∏
〈ij〉∈EG

(
1 + vδσi ,σj

)

where v = exp(β) − 1. Expanding we have

ZG(β) =
∑
{σi }

∑
G′∈P(EG)

∏
〈ij〉∈G′

vδσi ,σj
=

∑
G′∈P(EG)

v|G′|Q#(G′) (1.1)

where |G′| is the number of edges and #(G′) is the number of connected components of G′

regarded as a subgraph of G in the obvious way. For example, figure 1(i) shows a subgraph
G′ on a square lattice, with #(G′) = 12.

We can now consider the RHS of (1.1) in its own right (as a ‘dichromatic’ polynomial
in variables v and Q). The exercise is to construct a transfer matrix formulation in which
to compute it, in cases where G has (‘time’) translation symmetry. We also require that G
embeds in some Euclidean space and that its edges (and hence the Potts interactions) are local.
However, even this is not enough to make the interactions in the dichromatic polynomial
formulation local, since #(G′) is not local. Instead we need to introduce an entirely different
state space. Although the restriction is not necessary, for the sake of simplicity we will describe
this by considering the example of the n-site wide square lattice.

In adding an extra layer to this lattice we are adding 2n − 1 edges. As ever in a transfer
matrix formalism, the problem is to find a set of states which keep enough information about
the old lattice G to determine #(G′) for the new one. It will be evident that each state must
record which of the last layer of vertices in G are connected to each other (by some route in G—
cf figures 1(i)–(iii)). Neither the details of the connecting routes nor any other information is
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Figure 2. Temperley–Lieb diagram.

needed; thus our state set is simply contained in the set of partitions of the last layer of vertices.
It is straightforward to see that (in the square, or otherwise plane, lattice case) precisely the
set of ‘plane’ partitions are needed. These are the partitions realizable by noncrossing paths
in the interior when the vertices are arranged around the edge of a disc.

Pictures of such paths are called Whitney diagrams [21]. If instead we represent plane
partitions by boundaries of connected regions, these diagrams become Temperley–Lieb (or
boundary) diagrams on the disc. Note that these are plane pair partitions of double the number
of vertices. See figure 2 for an example. Note that the original lattice itself has all but
disappeared from the state space (replaced by a topological/combinatorial construct).

Finally we note that in order to compute correlation functions some further information
must be retained (essentially the details of connections also with the vertices on the left-hand
side of the graph in figure 1). This corresponds to Temperley–Lieb diagrams on the rectangle—
i.e. with both in-vertices and out-vertices. These diagrams may be composed by juxtaposition
at one edge of the rectangle when the number of states agrees. With an appropriate reduction
rule for interior loops (replace by a factor

√
Q) this becomes the Temperley–Lieb algebra

(indeed category, indeed monoidal category).
Casting the state space in this form is certainly beautiful and computationally convenient

(see [23]), but it is not the same as integrability. Since the Potts model is integrable under certain
conditions, solutions to the Yang–Baxter equations can be constructed using Temperley–Lieb
diagrams, but such exercises will not be our focus in the present communication.

The following set of Temperley–Lieb diagrams generate the Temperley–Lieb algebra on
n vertices (i.e. n in- and n out-vertices). The identity diagram is the rectangle in which each
in-vertex is connected to the corresponding out-vertex. The diagram Di is like the unit except
that in-vertices i and i + 1 are connected, and out-vertices i and i + 1 are connected. (See
figure 3. Here the vertices are attached to the vertical edges of the diagram. We will later adopt
the convention that the vertices are attached to the horizontal edges instead.) The generators
are D1, . . . , Dn−1. The state space we have constructed induces a representation of these
elements. The transfer matrix is then

T =
∏

i

(
1 +

v√
Q

R(D2i )

) ∏
i

(
v√
Q

+ R(D2i−1)

)
(1.2)

and

Z(β) = Tr(T n).

Finally, the trace can be decomposed into the irreducible representations in R (amongst
other partial diagonalizations). The close relationship this engenders between representation
theory and correlation functions (see, e.g., [23]) is what we aim to generalize.
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Figure 3. Temperley–Lieb identity diagram, diagram D1, and a diagram with different numbers
of in and out-vertices.

Both mathematically and physically it is convenient to assemble the Temperley–Lieb
algebras into the Temperley–Lieb category (diagrams with different numbers of in- and out-
vertices [21]; see later for details). Accordingly we approach the problem of generalization
here by casting the problem in a categorical framework, and defining a number of categories
generalizing this category. The claim is that this is natural, and ultimately makes the exposition
more efficient.

The generalization to ‘higher dimensions’ (in the mean-field sense of every lattice point
being a neighbour) is the partition category [22], but it is natural also to seek a 3D version. A
3D lattice subalgebra of the partition algebra was studied by Dasmahapatra and Martin [10]
but it has very few of the beautiful properties of the Temperley–Lieb and partition categories
(cf Baxter–Bazhanov tetrahedra for example [6, 7, 14]), and essentially no progress has been
made in this direction. Here we describe a generalization of the full Temperley–Lieb category
to 3D that is closer in spirit to the cobordism category of topological quantum field theory
[3, 20] and to lattice gauge theories [21, p 278]. The problem with such a construction is that
there are significant initial problems with well-definedness, but the payoff is potential access
to generalizations of several of the structures mentioned above. In this communication we
solve the well-definedness problem, and the core enumeration problem in using the resultant
algebras. Applications will be discussed elsewhere.

2. Concrete diagram categories

We begin by selecting a direction in d-dimensional Euclidean space E
d which we call ‘time’,

coordinatized by a real number t. For fixed d ∈ N and t � 0 we define Et = R
d−1 × [0, t]. If

D and E are subsets of E
d , we write CE(D) for the number of connected components of E\D

in the Euclidean topology.

Definition 1. The set Sd,t of concrete diagrams of duration t is the set of compact subsets of
Et such that D ∈ Sd,t if and only if, for all D′ obtained from D by removing a single point, we
have CEt

(D′) = CEt
(D) − 1. Then Et is called a universe for D Write Sd for ∪t�0S

d,t and
Sd−1

[ ] for the set of concrete diagrams in Sd with t = 0.

For d = 2, concrete diagrams coincide with concrete Temperley–Lieb diagrams, and
in this sense our construction provides a ‘higher-dimensional’ generalization. For d = 3,
a concrete diagram can be thought of as consisting of a number of embedded submanifolds
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whose boundaries all lie on either of two parallel planes of constant time. See figures 1 and 2
for examples.

A component of D ∈ Sd,t is any point x ∈ D together with the maximal subset X � x

such that CEt
(D\X) = CEt

(D\{x}). A bubble is a component which does not intersect the
boundaries of Et . A component c has a handle if it properly contains a non-contractible
loop not homologous in c to a subset of the boundary of Et . Write |D| for the number of
components of a concrete diagram D, and b(D) for the number of bubbles.

The number of handles of a concrete diagram D ∈ S3 is the genus of D, written g(D).
We will write χ(D) for the Euler number of D [2, 26].

Definition 2. Let F,F ′ ⊂ R
d−1. Then Sd,t [F,F ′] is the subset of Sd,t of concrete diagrams

which intersects the t-boundary of Et in F and the 0-boundary in F ′. Set Sd [F,F ′] =
∪t�0S

d,t [F,F ′]. The boundary configuration of D ∈ Sd [F,F ′] is the ordered pair (F, F ′).

(Note that Sd [F,F ′] = ∅ unless F,F ′ ∈ Sd−1
[ ] . In practice, we shall restrict attention to

cases in which F and F ′ are unions of (d − 2)-spheres.)
For T a set, let ℘(T ) be the set of partitions of T and P(T ) the power set of T. For U and

V sets and u ∈ ℘(U), v ∈ ℘(V ) we write u ∗ v for the partition algebra composition of u
with v [25, p 158], or more generally the Ag product in [22, p 77].

For D ∈ Sd [F,F ′] define its connectivity p(D) as the partition of the components (with
respect to the obvious extension of the E

d−1 topology) of F ∪̇ F ′, such that a, b are in the
same part if they are in the same component of D. For example, for D the concrete diagram
with labelled boundaries in figure 2, the connectivity is p(D) = {{1, 1′}, {2}, {2′}}.

For fixed d ∈ N define the map R : Sd → Sd by R(D) being D with all bubbles removed.
Define Sd

min ⊂ Sd as the subset of elements with no bubbles and no handles. The elements of
Sd

min are called minimal. For example, all the diagrams shown in figure 2 are minimal, whereas
the diagram of figure 1 is not, as it contains a bubble.

For any two sets A and B, define the symmetric difference A ∧ B := (A ∪ B)\(A ∩ B).
For A,B ∈ Sd we write A∧B for the closure of A ∧ B in the Euclidean metric topology. Two
concrete diagrams D and D′ are ∧-composable if they have a universe in common and D ∩D′

is a finite union of disjoint closed (d − 1)-balls. It can then be shown that [24]

Lemma 3. If D and D′ are ∧-composable then D∧D′ ∈ Sd .

For B ∈ Sd , define dom B as the set of all A ∈ Sd which are ∧-composable with B. Then
we define the map δB : dom B → Sd by A �→ A∧B.

For any point P ∈ E
d with time coordinate tP , the time translate Pτ is the point in E

d

with the same projection on the t = 0 subspace as P but with time coordinate tP + τ . For any
Z ⊂ E

d , we define Zτ by P ∈ Zτ ⇔ P−τ ∈ Z. The following diagram composition lemma
follows now from definition 1.

Lemma 4. If A ∈ Sd,t [F ′, F ] and B ∈ Sd,τ [F,F ′′], then A ◦ B := Aτ ∪ B is in Sd [F ′, F ′′].

Let us now define the triple Cd = (
Sd−1

[ ] , hom(−,−), ◦) consisting of the ‘object
set’ Sd−1

[ ] ; and for each pair of objects E,F ∈ Sd−1
[ ] the collection of ‘morphisms’

hom(E, F ) = Sd [E,F ]; and composition of morphisms defined by ◦-composition of concrete
diagrams. The morphism in hom(F, F ) of duration one whose sections of constant time are
time translates of F will be denoted IF .

Theorem 5. Cd is a category.
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Proof. We require to show associativity of ◦, and existence of identity element in each
hom(F, F ). The former is clear, the latter is the concrete diagram of duration zero. �

Let A ∈ S3[F ′, F ] and B ∈ S3[F,F ′′]. Then

χ(A ◦ B) = χ(A) + χ(B), (2.1)

(which follows directly from the definition of χ(A) as an alternating sum of Betti numbers, or
as a sum of Morse indices [27], of A) and

g(A ◦ B) = g(A) + g(B) + |A ◦ B| − |A| − |B| + |F |. (2.2)

We will later need other results that follow easily from equation (2.1) which we give without
proof. Here we assume that all ◦-compositions are defined; D is a minimal concrete diagram
with the same connectivity as A ◦ B, and G is a minimal concrete diagram with the same
connectivity as B ◦ C:

g(A ◦ B) + g(D ◦ C) = g(B ◦ C) + g(A ◦ G),

b(A ◦ B) + b(D ◦ C) = b(B ◦ C) + b(A ◦ G).
(2.3)

3. Equivalence relations on S3

In this section we set d = 3. We will write i for the usual relation of isotopy (i.e., a
continuous, one-parameter family of homeomorphisms [28]). If j is a specific isotopy with
parameter s ∈ [0, 1] and A is a concrete diagram, we write ju(A) for the image of A under j

at s = u. In particular, j0(A) = A for all A. Two concrete diagrams A and B are isotopic iff
there is an isotopy j such that js(A) is a concrete diagram for all s, and j1(A) = B.

This defines the isotopy relation i in the set of concrete diagrams. It is obviously an
equivalence relation.

Let A and B be concrete diagrams. If A and B are isotopic by an isotopy j such that the
boundaries of js(A) are time translates of the boundaries of A for all s we say that they are
strongly isotopic.

For example, the isotopy whose action on a point in E
3 with coordinates (x, y, t) is

js(x, y, t) = (x, y, (1 + s)t) is strong. Strong isotopy is clearly an equivalence relation, which
we denote si.

Definition 6.

(1) For any A,B ∈ S3, define relation r1 by Ar1B if there is a torus T such that A ∩ T is a
disc, and B = δT A. Relation r is the transitive closure of r1.

(2) Relation sh, called strong heterotopy, is the reflexive, symmetric and transitive closure of
r1 and si.

(3) Relation h, called heterotopy, is the reflexive, symmetric and transitive closure of r1

and i.

The cosets S3[F,F ′]/sh and S2[F,F ′]/i (Temperley–Lieb diagrams) are infinite owing
to the possible presence of bubbles or handles. But S2

min[F,F ′]/i is finite. We will show in
section 4 that S3

min[F,F ′]/sh is finite.
The following lemma follows immediately from the previous definitions.

Lemma 7. If AhA′ then b(A) = b(A′). If AshA′ then p(A) = p(A′).

Definition 8. For D ∈ S3
min, write [D]h for the restriction of the h-class of D to S3

min, i.e.,
[D]h = {

C ∈ S3
min

∣∣ ChD
}
. Write S3

h
for the set of h-classes in S3

min and S3
h
[F,F ′] for the
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set of h-classes in S3
min[F,F ′]. Similarly, write [D]sh for the restriction of the sh-class of

D to S3
min, i.e., [D]sh = {

C ∈ S3
min

∣∣CshD
}
, and S3

sh
for the set of sh-classes in S3

min, and

S3
sh

[F,F ′] for the set of sh-classes in S3
min[F,F ′].

By the handle decomposition theorem [27],

Proposition 9. For every A ∈ S3 there exists D ∈ S3
min such that DrR(A).

Definition 10. Define Dr : S3 → P
(
S3

min

)
by A �→ {

D ∈ S3
min

∣∣DrR(A)
}
.

The following proposition follows from proposition 9 and definition 6.

Proposition 2. For each A ∈ S3 there is D ∈ S3
min such that Dr (A) ⊆ [D]sh. Moreover, if

Dr (A) ⊆ [D]sh and Dr (A) ⊆ [D′]sh then [D]sh = [D′]sh.

Define Dh(A) and Dsh(A) as, respectively, the h- and sh-class in S3
min containing Dr (A).

Definition 12. For K a ring and p, q ∈ K define the reduction maps µ and ν as

µ : S3 → KS3
h

ν : S3 → KS3
sh

A �→ pg(A)qb(A)
Dh(A) A �→ pg(A)qb(A)

Dsh(A)

and extend linearly to KS3 in each case.

If A and B are ◦-composable, then any A′shA and B ′shB are also ◦-composable. The
next lemma follows from noticing that the two strong heterotopies relating A to A′ and B to
B ′ combine into a single one that relates A ◦ B to A′ ◦ B ′.

Lemma 13. Let A and B are ◦-composable. Let A′shA and B ′shB. Then (A ◦B)sh(A′ ◦B ′).

Therefore we can extend ◦-composability to sh-classes in a well-defined way by
◦-composing representatives.

Definition 14. Let A,B be ◦-composable. Then [A]sh • [B]sh := ν(A ◦ B).

Theorem 15. The triple Csh = (
S2

[ ],KS3
sh

[−,−], •) is a category whose morphisms are
sh-classes of concrete diagrams.

Proof. (i) Associativity of •-composition of sh-classes follows from associativity of ◦-
composition of concrete diagrams. (ii) The unit in S3

sh
[F,F ] is the sh-class of the diagram of

zero duration in S3[F,F ]. �

Proposition 16. Let A,B ∈ Sd [F,F ′] and AhB. Then there exist L ∈ S3
min[F,F ] and R ∈

S3
min[F ′, F ′] such that LhIF , RhIF ′ and Ash(L ◦ B ◦ R).

Proof. If AshB then take L = IF and R = IF ′ . Otherwise the h-relation between A and
B contains isotopies in a neighbourhood of the boundary of A. Extend those isotopies to a
neighbourhood of IF and IF ′ in IF ◦ A ◦ IF ′ to obtain L ◦ B ◦ R. The L and R so defined are
clearly h-related to IF and IF ′ , respectively (in fact, isotopic). �

By a routine check that the group axioms are satisfied, we have

Proposition 17. The sh-classes inside [IF ]h in S3
min[F,F ] form a group �F under

•-composition, with unit [IF ]sh.

Definition 18. For a finite X ⊂ Sd
min, define σX = ∑

A∈X A ∈ KSd
min.
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4. h-classes and connectivity

In this section we show that the S3[F,F ′]/sh is finite.

Definition 19. Let c and d be components of A ∈ Sd . Then c and d are neighbours if there is a
path connecting c to d not intersecting any other component of A. Let c and d be neighbours
in A with path P, and e a surface obtained from c and d by removing a disc from each and
joining the edges with a cylindrical thickening of P not intersecting any other component of
A. Then e is a bridging of c and d and the cylinder is a bridge connecting c and d.

Theorem 20. Let A,B ∈ S3
min[F,F ′]. Then AshB iff p(A) = p(B).

Necessity follows from the definition of sh. A complete proof of sufficiency will be given
in [24]. Here we present those ideas of the proof that are relevant to understanding the rest
of this communication. The key observation is that any two concrete diagrams in S3

min[F,F ′]
with |F | + |F ′| components are necessarily sh-related (in fact, si-related) and have equal
connectivities. (Both statements follow from the fact that all components in any such concrete
diagram are discs, each disc bounded by exactly one loop in either F or F ′.) The proof then
proceeds by induction in k = |F | + |F ′| − n, where n is the number of components of A and
B. Given A,B ∈ S3

min[F,F ′] with p(A) = p(B) and n < |F | + |F ′| components (i.e., k > 0),
concrete diagrams A′, B ′ ∈ S3

min[F,F ′] are constructed such that p(A′) = p(B ′), and both
have n + 1 components (i.e., k reduced by 1). The induction hypothesis is that the theorem is
true for k − 1, so that A′shB ′. It is then shown that A and B can be reconstructed from A′

and B ′ by bridging, in a way that shows that A and B are also sh-related. This shows that
the theorem is true for k if it is true for k − 1. Being true for k = 0 (concrete diagrams in
S3

min[F,F ′] with |F | + |F ′| components), it follows that it is always true.

Proposition 21. For any F,�F is a finite group.

Proof. It was established in proposition 17 that �F is a group. Because F is always a finite
set, the partition set ℘(F ∪̇ F) is also finite. Hence, by theorem 20, there is a finite number of
sh-classes in [IF ]h. �

5. Composition of h-classes

Consequent to proposition 16, there are fewer h-classes than sh-classes in S3
min[F,F ′]. We

regard the extra symmetry h/sh as the higher-dimensional counterpart of order-preserving
displacements of the endpoints of Temperley–Lieb diagrams along the upper or lower edges.
For that reason we regard h-classes as the natural generalization of the notion of Temperley–
Lieb diagram to higher dimensions, and they will be the main object of study in the rest of
this work.

Our goal, then, is to define a composition of h-classes by which each S3
h
[F,F ] becomes

a finite-dimensional, associative algebra with unit.

Proposition 22. Let A,A′, B, B ′ ∈ S3
min and AshA′ and BshB ′. If A and B are ◦-composable,

then µ(A ◦ B) = µ(A′ ◦ B ′).

Proof. From lemma 13, D(A ◦ B) = D(A′ ◦ B ′). Therefore we only need to prove that
b(A◦B) = b(A′◦B ′) and g(A◦B) = g(A′◦B ′). By lemma 13 we know that (A◦B)sh(A′◦B ′),
and then by lemma 7 b(A ◦ B) = b(A′ ◦ B ′). By theorem 20 we know that p(A) = p(A′)
and p(B) = p(B ′), hence p(A ◦ B) = p(A′ ◦ B ′) and, in particular, A ◦ B and A′ ◦ B ′ have
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an equal number of non-bubble components. Hence |A ◦ B| = |A′ ◦ B ′|. But it follows from
equation (2.2) that g(A ◦ B) depends only on the number of components of A ◦ B if A and B
are minimal. Therefore g(A ◦ B) = g(A′ ◦ B ′). �

This proposition can be extended to show that if Ai,A
′
i ∈ S3

min[Fi, Fi+1] with AishA′
i for

i = 1, . . . , n, then

µ(A1 ◦ · · · ◦ An) = µ(A′
1 ◦ · · · ◦ A′

n). (5.1)

Definition 23. A subset of [IF ]h is complete if it consists of exactly one element from each
sh-class.

Lemma 24. Let A,A′ ∈ Sd
min[F ′, F ] and B,B ′ ∈ Sd

min[F,F ′′], with AhA′ and BhB ′. Let
X,X′ be complete subsets of [IF ]h. Then

µ(A ◦ σX ◦ B) = µ(A′ ◦ σX′ ◦ B ′).

Proof. By proposition 21, X and X′ are finite sets and σX and σX′ are defined. By
proposition 16 there are LAhIF ′ , RAhIF such that Ash(LA ◦ A′ ◦ RA), and similarly LBhIF ,

RBhIF ′′ such that Bsh(LB ◦ B ′ ◦ RB). Then, for each Y ∈ σX, equation (5.1) gives
µ(A ◦ Y ◦ B) = µ(LA ◦ A′ ◦ RA ◦ Y ◦ LB ◦ B ′ ◦ RB). But, by completeness of X
and proposition 17 there exists exactly one Y ′ ∈ X′ such that (RA ◦ Y ◦ LB)shY ′, so
µ(A ◦ Y ◦ B) = µ(LA ◦ A′ ◦ Y ′ ◦ B ′ ◦ RB). Finally, (LA ◦ A′ ◦ Y ′ ◦ B ′ ◦ RB)h(A′ ◦ Y ′ ◦ B ′)
and both have an equal number of bubbles and handles, so µ(A ◦ Y ◦ B) = µ(A′ ◦ Y ′ ◦ B ′).
The lemma follows by summing over Y ∈ X. �

That is, µ(A ◦ σX ◦ B) depends only on the h-classes of A and B and not on the choice
of X. Therefore we have a well-defined composition of h-classes into KS3

h
:

[A]h ·′ [B]h = µ(A ◦ σX ◦ B). (5.2)

If |X| has an inverse in K we define a new composition rule that has [IF ]h as unit:

[A]h · [B]h = 1

|X|µ(A ◦ σX ◦ B). (5.3)

As was done in section 3 with sh-classes, the set S3
h
[F,F ′] of h-classes in S3[F,F ′] can be

interpreted as the set of morphisms with object set S2
[ ] and composition rule given by (5.3). In

the next subsection we show that this composition rule is associative. Then,

Theorem 25. The triple Ch = (
S2

[ ],KS3
h
[−,−], ·) defines a category which will be called the

heterotopy category.

The only non-trivial step in the proof of this theorem is associativity:

Proposition 26. Let [A]h, [B]h, [C]h ∈ S3. Then

([A]h · [B]h) · [C]h = [A]h · ([B]h · [C]h).

Proof. Let X be a complete subset of [IF ]h. For each Y ∈ X define [EY ] = D(A ◦ Y ◦ B)

and [HY ] = D(B ◦ Y ′ ◦ C). Then

([A]h · [B]h) · [C]h = 1

|X|2
∑

Y,Y ′∈X

pg(A◦Y◦B)qb(A◦Y◦B)pg(EY ◦Y ′◦C)qb(EY ◦Y ′◦C)
D(EY ◦ Y ′ ◦ C),

[A]h · ([B]h · [C]h) = 1

|X|2
∑

Y,Y ′∈X

pg(A◦Y◦HY ′ )qb(A◦Y◦HY ′ )pg(B◦Y ′◦C)qb(B◦Y ′◦C)
D(A ◦ Y ◦ HY ′).

Because both EY ◦ Y ′ ◦ C and A ◦ Y ◦ HY ′ are in D(A ◦ Y ◦ B ◦ Y ′ ◦ C) we have
D(EY ◦ Y ′ ◦ C) = D(A ◦ Y ◦ HY ′). Therefore we only need to prove that
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g(A ◦ Y ◦ B) + g(EY ◦ Y ′ ◦ C) = g(A ◦ Y ◦ HY ′) + g(B ◦ Y ′ ◦ C),

b(A ◦ Y ◦ B) + b(EY ◦ Y ′ ◦ C) = b(A ◦ Y ◦ HY ′) + b(B ◦ Y ′ ◦ C).

Those equations follow from equations (2.3). �

Rule (5.3) does not provide a practical means of computing the composition of two
given h-classes, except in the simplest cases where representative concrete diagrams can be
concatenated by hand. We address this question next.

6. Computing the multiplication table

In order to generate examples, and to begin analysing the structure of the algebra, we need to
be able to compute compositions efficiently. If we wished to compute the multiplication table
for the algebra S3

h
[F,F ] with F two concentric circles, we could use as a concrete basis the

concrete diagrams in figure 2, concatenate them by hand and finally apply the reduction map
µ. This would result in the following multiplication table, in which D1, . . . , D9 refers to the
concrete diagrams shown in figure 2, numbered from left to right.

row × col D1 D2 D3 D4 D5 D6 D7 D8 D9

D1 pD1 pD2 D1 pD4 D1 pD6 D2 D4 D6

D2 D1 D2 qD1 D4 D2 D6 qD2 qD4 qD6

D3 pD3 pD7 D3 pD8 D3 pD9 D7 D8 D9

D4 pD4 pD6 D4 pqD4 D4 pqD6 D6 qD4 qD6

D5 D1 D2 D3 D4 D5 D6 D7 D8 D9

D6 D4 D6 qD4 qD4 D6 qD6 qD6 q2D4 q2D6

D7 D3 D7 qD3 D8 D7 D9 qD7 qD8 qD9

D8 pD8 pD9 D8 pqD8 D8 pqD9 D9 qD8 qD9

D9 D8 D9 qD8 qD8 D9 qD9 qD9 q2D8 q2D9

We now present a more efficient method of computing multiplication tables which makes
use of the bijection established in theorem 20 between sh-classes in S3

min[F,F ′] and those
partitions of F ∪̇F ′ which are connectivities of concrete diagrams in S3

min[F,F ′]. A convenient
way to represent a partition of F ∪̇ F ′ for this purpose is by means of coloured graphs.

Definition 27. Let G be a graph and C a set. A colouring of G by C is a map from the edge
set of G to C. Write GC for the set of all colourings of G by C.

Given F, let G(F ) be the rooted undirected graph constructed as follows. The vertex set
is the set of connected components of R

2\F (regions), the root being the vertex associated
with the unbounded region; there is an edge between two vertices if there is a component in F
which is a boundary between the corresponding regions.

We may associate a rooted tree with the graph G(F ) by forgetting the labels on all the
vertices except the root. Now consider a concrete diagram D ∈ S3

min[F,F ′] and an injective
map f with domain the set of component of D. We will say that component d has ‘colour’
f (d). Given the pair (D, f ) we define a colouring φ(D, f ) of the edges of the ordered pair
of graphs (G(F ),G(F ′)) as follows: if l ∈ F ∪̇ F ′ is in the boundary of component d in D,
then the colour of the edge associated with l is f (d).

We will regard (G(F ),G(F ′)) as the single tree G(F ∪̇ F ′) by identifying the roots. Then
φ(D, f ) defines a partition of the set of edges of G(F ∪̇ F ′) which corresponds to the partition
p(D) of the set of loops of F ∪̇ F ′. By theorem 20, each such colouring of G(F ∪̇ F ′)
corresponds to a sh-class in S3

sh
[F,F ′].
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Definition 28. For any two edges e and e′ in a tree let ch(e, e′) be the chain of edges connecting
e to e′ in the tree (excluding e and e′). An element of G(F ∪̇ F ′)C is admissible iff for every
pair of same-coloured edges e and e′, either there is another edge in ch(e, e′) of the same
colour, or else every colour in ch(e, e′) appears an even number of times.

Proposition 29. The image under φ of the set of n-component elements of S3
min[F,F ′] is the

set of admissible colourings in G(F ∪̇ F ′){1,2,...,n}.

We refer to [24] for a proof. This proposition establishes a correspondence between
admissibly-coloured graphs and sh-classes. Then a h-class can be represented by the coloured
graph of any of the sh-classes of which it consists.

The correspondence between h-classes and coloured graphs gives us a practical way of
computing compositions of h-classes. Let A ∈ S3

min[F ′, F ] and B ∈ S3
min[F,F ′′] and f a map

colouring the components of A and B so that no colour appears in both A and B. To compute
[A]h ·[B]h we first draw the coloured trees φ(A, f ) and φ(B, f ). If the group �F has only one
element (the identity) there is a well-defined correspondence between the F-edges of φ(A, f )

and the F-edges of φ(B, f ). We then identify the colours of every pair of edges that are in
correspondence, and propagate this identification to the F ′-edges of φ(A, f ) and the F ′′-edges
of φ(B, f ). The element of G(F ′ ∪̇ F ′′)C obtained by joining φ(A, f ) and φ(B, f ) at the
root after the identification and propagation of colours corresponds to [A]h · [B]h. Therefore
composition of h-classes coincides with the partition algebra composition of the connectivities
if �F is trivial. This is not so if the group �F has n > 1 elements. Then there are n ways in
which the F-edges of φ(A, f ) and the F-edges of φ(B, f ) can be put in correspondence. The
insertion of a complete set in equation (5.3) corresponds to defining the composition to be the
uniformly weighted sum of the n possible outcomes.

The power of q in [A]h · [B]h is the number of colours after identification which do not
propagate to the F ′-edges of φ(A, f ) or the F ′-edges of φ(B, f ). If the number of colours
in φ(A, f ) and φ(B, f ) before and after identification is, respectively, Cb and Ca , then by
equation (2.2) the power of p in [A]h · [B]h is Ca − Cb + |F |.

For example, consider again the concrete diagrams shown in figure 2. Note first that
�F = 1, as the two concentric loops in F cannot be interchanged by an isotopy. There are
nine admissible colourings. Let D1,D2, . . . , D9 be the h-classes defined by those admissible
colourings, in the order shown in the right-hand side of figure 3 (colours are indicated by
letters r, y, b and g). The composition table for these heterotopy classes is then the one shown
at the beginning of this section.

This example is atypical in that the loop configuration (F, F ) has �F = 1. Let us now
consider the boundary configuration shown in figure 4. There are now two different ways in
which the coloured edges of two concrete diagrams can be put in correspondence. Taking the
coloured trees shown in figure 4, we find that the two elements of �G give rise to two different
contributions to the composition D1 · D1, one of which is qD1 and the other D2. Therefore
we find that D1 · D1 = 1

2 (qD1 + D2).
A more detailed analysis of the algebras defined here is given in [24], together with a

preliminary analysis of their representation theories, which are intriguingly much richer than
the original Temperley–Lieb algebra itself.

7. Discussion

In this communication we have constructed, for arbitrary d, algebras (indeed, categories)
whose basis diagrams exist in an ambient space of dimension d. The particular case d = 2
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Bubble

t=0

t =1

Figure 4. A concrete diagram in S2,1 having a bubble: b(D) = 1, g(D) = 0, |D| = 6, χ(D) =
|D| − b(D) = 5.

coincides with the Temperley–Lieb algebra already known to play an important role in the
analysis of the Q-state Potts model by transfer matrices, as explained in the introduction.

We will conclude by discussing the relevance of the case d = 3 to the statistical mechanics
of three-dimensional lattice models. In particular, we consider the three-dimensional gauge
Potts model [18], a simple, discrete forms of the lattice gauge theory which lies at the core
of computational particle physics [9, 30]. In this gauge theory, the local states reside at the
bonds (also called edges) of a three-dimensional lattice. Transfer matrix layers are essentially
two-dimensional, and we will later define a set of ‘gauge’ states which are (after suitable
gauge fixing) loops drawn on the bonds of the layer of the lattice. In the continuum limit,
these states resemble the ‘boundary configurations’ which we described in the main body of
this communication, as we now explain.

In the three-dimensional Q-state Potts lattice gauge model with lattice edge set E, the set
of gauge field configurations is the set of all functions f : E → ZQ. Each configuration gives
a field

F(x) = e2π if (x)/Q. (7.1)

Let Y and BY denote respectively a plaquette and its oriented boundary. The orientation of an
edge x ∈ BY will be denoted ε(x), where ε(x) = ±1 and

∑
x∈BY ε(x) = 0 for any plaquette

Y. Then we define the energy H(Y) of plaquette Y and the total energy of the lattice H to be

H(Y) = 1

Q

Q−1∑
r=0

∏
x∈BY

F (x)rε(x), H =
∑
Y

H(Y ), (7.2)

where the sum in H extends oves all the plaquettes in the lattice [18]. Note that H(Y) is real
for all Y. Indeed, a re-expression, more reminiscent of the Potts Hamiltonian, is

H(Y) = δσ1σ2σ3σ4,1 (7.3)

where we have taken BY = {x1, x2, x3, x4} and σj = F(xj )
ε(xj ). The partition function of the

system is defined in the usual way as Z(β) = ∑
f e−βH .

The transfer matrix layer defines a perpendicular direction that we will call ‘timelike’.
Bonds and plaquettes perpendicular to this direction are ‘spacelike’. It was shown in
[21, equation (10.22)], that, for this model, the transfer matrix on a layer of the lattice
can be written as

T (v) =
∏

x∈edge

(
v + Q1/2R(Ux)

) ∏
Y∈layer

(
1 + vQ−1/2R(UY )

)
. (7.4)
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t=0

t=1

1

1’

2

2’

Figure 5. Representations of several concrete diagrams in S3,1 whose boundaries are two pairs of
concentric circles. One concrete diagram has its boundary loops labelled 1, 2, 1′ and 2′ for a later
purpose.

in which Ux and UY are operators obeying the relations

UxUx = Q1/2Ux if x is a spacelike bond
UY UY = Q1/2UY if Y is a spacelike plaquette
UxUY Ux = Ux if x ∈ BY

UY UxUY = UY if x ∈ BY

UxUY = UY Ux if x /∈ BY

UxUx ′ = Ux ′Ux if x �= x ′

UY UY ′ = UY ′UY if Y �= Y ′,

and R is a representation. This is directly analogous to equation (1.2) and, just as we derived a
Temperley–Lieb diagram basis for D2i and D2i−1 in the introduction, so the operators Ux and
UY have a representation in a non-local basis of gauge states, defined as follows. Consider the
set of possible closed paths drawn on the bonds of a square lattice, accessible from the empty
case (no path) by any sequence of the operations: (i) draw a path around the boundary of a
plaquette; (ii) remove a segment common to two paths. Figure 8 shows this construction in
a 3 × 1 lattice where the circles represent closed paths of edges. Note that v14 contains two
concentric loops, similar to the loop configurations in figures 5 and 6. In this basis, the matrices
Ux and UY are given by (Ux)ij = Qδij /2 if removing all loop segments passing through bond
x (and any open arcs left over) takes state vi to state vj , and 0 otherwise; (UY )ij = Qδij /2 if
building a loop around a square Y takes state vi to state vj , and 0 otherwise. For example,
taking the bond marked x in state v5, we would find that Uxv5 = v9 and Uxv2 = Uxv3 = v1.
If plaquettes are numbered as in state v1, then, for example, U2v2 = v5 and U1v5 = Q1/2v5.

No exact solutions to three-dimensional spin (or dual gauge) lattice models are yet known,
despite their importance and a great deal of effort spent on them since their inception [6, 9, 12].
In this context, it is helpful to explore any aspects which do generalize to three dimensions,
of the contrastingly well-understood two-dimensional models (even if doing so does not lead
immediately to a solution of a specific model). We conclude with some remarks in this
direction.
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Figure 6. (a) Construction of G(F ∪̇F) from figure 2. (b) Admissible colourings.

1 1’2 2’

D 1 D 2

2’1’21

r

y r

b r

y b

p

Figure 7. Boundary configuration (G,G) with �G = Z2, and two admissible colourings D1
and D2.

v3v1 v v v v v v8 v9 10 11 v12 v13 v1476542

x

v v

3

2

1

Figure 8. States of the gauge Potts model in a 3 × 1 lattice.

The passage from the Hamiltonian (7.3) to the algebra generated by the Ux and UY provides
a useful framework in which to analyse the statistical mechanics of the three-dimensional gauge
Potts model, analogous to the corresponding two-dimensional case. The algebras defined in
the main body of the present communication for d = 3 act on themselves (i.e. in the regular
representation) in a way analogous to the way Ux and UY act on the gauge states. This suggests
the intriguing possibility of a three-dimensional model associated with the d = 3 algebra in
the same way as the classical Hamiltonian (7.3) leads to the Ux and UY . Another interesting
possibility would be to construct a three-dimensional classical version of the quantum loop
gas in [11], in analogy to the relationship between classical two-dimensional lattice models
and one-dimensional quantum spin chains [5]. In order to do this, it would be useful to have
a generalization of the tensor space representation of Temperley–Lieb on which spin chains
act. It is not yet clear what form such generalization would take.
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